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ABSTRACT 

An exciting prospect for modern filtering theory lies in the field 

of orbital navigation, but as of today the most impressive results 

in orbit determination have been obtained by classical methods of 

parameter estimation.   Some current experience and problems 

are described and *beir implications for modern filtering theory 

are discussed.   Two techniques, found effective in the classical 

process, are presented in the context of recursive estimation. 

Four illustrative plots are included. 
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1.   INTRODUCTION 

Many early expositions of the modern filtering theory (MFT) have been in 

orbit determination and some of the most exciting prospects for the imple- 

mentation of MFT lie in the field of space navigation (Kefs.  1 and 2).   How- 

ever, as of today, the most impressive results in orbit determination have 

been obtained with the classical methods of parameter estimation, as applied 

at the Naval Weapons Laboratory, Applied Physics Laboratory (APL) of The 

Johns Hopkins University, and at other installations (Refs.  3, 4, and 5). 

Some of the experience and problems of the classical approach will be de- 

scribed and their implications for MFT discussed.    Two techniques used 

effectively in the classical process are presented in the context of recursive 

estimation. 
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2.    THE PROBLEMS 

The typical problems of MFT (smoothing, filtering, and prediction) as defined 
by Kaiman (Ref.  6) correspond in the field of orbit determination to those of 
epheroeris reconstruction, navigation, and orbital prediction, all of •which 

have important applications.    The navigational or filtering problem (that of 
seeking a current estimate of position and velocity based on a current obser- 
vation and a recent past estimate) is one that astronauts will face with the 
advent of onboard navigation, but it has not commanded much specific atten- 
tion in classical orbit determination.   As for the smoothing and prediction 
problems, the ephemeris of a geodetic satellite must be reconstructed with 
all possible precision, and a navigational satellite is useful only if its position 
can be predicted with great accuracy.    There have been impressive results   • 
in both areas. 



3.    THE RECORD 

In both problems described, primary concern is with, the satellite ephemeris, 

that is, with its position and velocity as functions of time.    A variety of 

empirical methods have been used to increase the accuracy of the ephemeris. 

Nearly all were found wanting and replaced, with improved results, by more 

sophisticated estimation procedures. 

Following are two related examples:   In some early attempts at orbit recon- 

struction at Aerospace Corp. , the final residuals from several flights were 

much too large (several thousands of feet) for the quality of the data, but 

could be accounted for very nicely with a time correction.    Timing error 

curves were prepared and used as an empirical device for increasing the 

accuracy of the ephemeris.    Their shape (sinusoidal with a 12-hour period) 

strongly suggested that the principal longitude-dependent term (the J-2 *:exxa) 

should be included in the geopotential.    This was done, and a suitable value for 

J_2 did indeed effect a dramatic reduction in the residuals.    The acid test of 

a scientific hypothesis being prediction, the revised geopotential, if a true 

scientific advance and not just a fancier empirical device, would have to lead 
to smaller residuals on other flights as well.    It did,  somewhat, but for best 

results required a different value for J?2» again due to further deficiencies 

in the geopotential model.   We were soon in the business of estimating J,, 

and a few other coefficients in the geopotential, as well as a drag coefficient, 
in addition to the six orbit parameters.   All this was in quest of just a position 

and velocity ephemeris. 

Additional degrees of freedom will invariably reduce the residuals in the fitted 

interval, but this is no proof that a better model has been found.   As men- 

tioned, the proper test of a hypothesis is in prediction; and the use of empirical 

techniques to obtain a good reconstruction has invariably resulted in rapidly 

increasing residuals outside the fitted interval.   Ultimately, only the true 

model will pass the test of prediction. 
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The outstanding example of precision orbit determination today is, possibly, 
the work on the TRANSIT project by APL. The project requires the predic- 
tion of a precision position and velocity ephemeris, and thus a highly accurate 
knowledge of the geopotential. (Their satellites are sufficiently high so that 
drag, although it cannot be ignored, is not a problem.) To fulfill their mis- 
sion, they have had the huge problem of estimating 70 non-zonal parameters 
of the geopotential with 1662 passes of satellite data (from 5 satellites) taken 
at uncertain locations (Äefs. 4 and 5). 

Working with the same data, but with independent computer programs, the 
Naval Weapons Laboratory has also made an. impressive determination of the 
coefficients of the geopotential (Ref. 3).   In their program, as many as 500 
parameters sre estimated simultaneously. 

Inspection of residuals played an important role in their work, as it has in 
ours.   Noting a pronounced oscillation of period about 60 hours, APL deduced 
a resonance effect between the orbital period of the satellite and non-zonal 
harmonics in the geopotential of order 13, with a beat period of 60 hours 
(Ref.  7).    They solved for the appropriate geopotential coefficients, and noted 
an appropriate reduction in residuals on two satellites launched three months 
apart (the prediction test), thereby completing an iteration of the hypothesis- 
solution-test cycle. 

The remaining residuals exhibit a daily pattern correlated with the longitude 
of the ascending node and, for some satellites, with the latitude.    Only 10 to 
30 m of the remaining residuals (less than 80 m) appear to be essentially 
random. 

These achievements are very impressive. Not only are good fits obtained in 
reconstruction, but also their results satisfy several important and indepen- 
dent checks,  and pass the test of prediction brilliantly. 
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4.    ESTIMATING UNCERTAINTIES 

There are two types of measures of the uncertainty in a reconstructed 

ephexneris.    One (which might be called "practical") is derived from an 

examination of the residuals; the other, the covariance matrix, is (under 

certain conditions) the inverse of the normal matrix A'WA,    and is thus a 

theoretical measure in which the residuals have no part. 

It is easy to stage examples wherein small changes in the geophysical model 

can have large effects upon the residuals, but virtually none upon the covari- 
ance matrix.    These do not speak -well for the value of the covariance matrix, 

as a measure of uncertainty.    The explanation is that the conditions under 

which the covariance matrix is valid are overlooked - as usual.   The conditions 

are that the random observational errors have mean zero and covariance 
matrix W      and that the model be correct. 

The latter requirement is invariably violated, in orbit determination problems, 

by linearization of the original equations, and more subtly, every time a 

geopotential or atmospheric model is used; for, inevitably, neither the true 

forms of the models nor the coefficients involved are certainly known.   Nor 

are the locations of the observing stations or the systematic error charac- 

teristics of the observing instruments precisely known.    Thus the usual 

covariance matrix determined in the course of estimating six (or a few more) 

orbit parameters, assuming all other parameters are exactly known, may be 

(depending on the sophistication and accuracy of the model) hopelessly opti- 

mistic and virtually worthless as a measure of ephexneris accuracy. 

Yet it is precisely this matrix that governs the size of corrections to MFT 

state variables.    A small covariance matrix, implying a high but false confi- 

dence in the current estimates, will permit only small corrections thereto. 
Clearly, some techniques that tend to de-weight old observations will be 

required. 

* 
The prime denotes the transpose of a vector or matrix. 



For system design studies, however, there is no recourse to uncertainty- 

estimates derived from observations.    Two alternatives are a Monte Carlo 

analysis (of frightening dimensions for a typical orbit determination problem), 
or an expanded form of covariance analysis described in Refs.  8, 9, and 10 

and below. 

It is assumed here that the form of a linear model is known,  and that certain 

parameters or state variables are to be estimated, but in the presence of 
other parameters the values of which are uncertain and not being estimated. 

From the first assumption, it is apparent that the method has some deficien- 

cies, but may permit sensible answers to relative questions such as:- "How 

does the uncertainty in the range bias of Station A, which is not being esti- 

mated, degrade our positional accuracy? " 

Suppose that observational residuals can be represented, after linearization, 
as the vector 

y = Ax + Bv + e (1) 

where 

y is an n-vector of residuals 

x is a p-vector of parameters to be estimated 

v is the q-vector of parameters not being estimated but 
with, uncertainties given by E(w') = P 

A,B    are matrices (n X p and n X q, respectively) 

c is an n-vector of random observational errors, of zero 
mean and covariance matrix E(c« ') = f' 

In deriving the estimate x of x, however, the dependence upon v is ignored. 

Thus the estimate is the familiar 

x = (A' WA)_1A' Wy (2) 



which is readily seen to be an unbiased estimate of x if E(v) = 0 (meaning 

that unbiased estimates were used as nominal values of the unknown param- 

eters).    Then 

5x = x - x = (AfWA)"1A'W(Bv+ t) (3) 

and the covariance matrix of the estimate is, assuming 5(ve') = 0, 

E(6x5x') = (A'WA)"1 + (A'WA)"1(A'WB)E(w')(A'WB)'(A'WA)"1        (4) 

or 

P      = P   +P QP Q'P (5) xv       x       x     v        x 

Now P      and Q are readily formed recursively.    The matrix P    = (A'WA)" 

can be computed recursively, using an identity, without explicit matrix 

inversion if W~   is diagonal (Refs. 2 or 8): 

Px<k + » = PxW " P««tfl[-»lP*«',fcH + Säl]"l-fcHP«W (6) 

Also 

Q(k+l)=Q(k) + afE+1wk+1bk+1 (7) 

•where 

P (k), Q(k)    signifies the evaluation of the matrices using the first k 
x rows of A, B, W 

st a. ,,, bj. -      are the (k + 1)     rows of A, 3 

wf+, is the (k + 1st diagonal element of W" 



We «ee that the uncertainty inx, as given by P^» is a sum of two terms, the 

second arising from tiie use of uncertain values for v.    The second term can 

be further expanded by partitioning the matrices involved, to present sepa- 

rately the effects upon P      of uncertainties in individual, or groups of, 

parameters.    Assume that P   is block diagonal 

F    =|p     ,, P    ,,.-•, P       I (8) v    I   v,l'     v,2" '     v, sj 

and specify a compatible partition of B, 

B =[Br B2, •  •  -, Bg] (9) 

and let Qi = A'WB.fi = 1,  •  •  • ,  s).    Then 

P      = P   + P  [Q,P    .Q: + • • • + Q P      Q' ]P (10) 
XV x xL    1    V, 11 s    V, S    SJ     X l 

and P Q.P    .Q.'P    is the contribution to the covariance matrix P      due to x   i   V,l   1    x , xv 
the uncertainties in the i     group of non-estimated parameters. 
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5.   DATA EDITING AND BOUNDED ESTIMATES 

Another real problem, which will have to be faced in orbital applications of 

MFT, is that of data editing.    In the techniques used with the classical methods 

of orbit determination it is usually assumed that many observations are 

simultaneously available and that, by polynomial or other smoothing, outliers 

can be detected and discarded.    The assumption is, however, contrary to the 

spirit of MFT.    If observations are comparatively scarce and only available 

singly, the usual kind of data editing may be out of the question.    There is the 

further possibility that an apparently bad observation is in fact valid, the 

large residual being due to the inadequacy of the mathematical model.   In such 

circumstances, a practical procedure might be to reject those observations 

that induce an unacceptably large correction to the estimate.    An alternative 

would be to accept all observations, but to impose a bound upon the computed 

correction to the estimate. 

Suppose that, after recording the k     observation, we seek a correction 

Ax(k) = x(k) - x(k - 1) to the parameter vector that minimizes 

f(k) = [y(k) - A(k)x(k)]'W(k)[y(k) - A(k)x(k)] <11J 

subject to the bound 

|| G • Ax(k) ||2 = 2^ (-gf)    = Ax(k)' G2A*M SI (12) 

i=l 

(G is a diagonal matrix with elements g.~ .) 

The solution of the bounded problem requires the minimization of 

f*(k) = f(k) + X.2(k)Ax(k)'G2Ax(k) (13) 

-11- 



where X (k) is a positive constant to be determined.    (The method is due to 
D. Morrison and reported in Refs.   10 and 11.)   To locate the minimum of 

f*(k), we set 3f*{k 

ing linear system 

f*(k). we set 3f*(k)/a[Ax(k)] = 0 and solve (with X(k)2 = 0 initially) the result - 

[A(k)' W(k)A(k) + X2(k)G2 ] Ax(k) 

= A(k)'W(k)[y(k) - A(k)x(k - 1)] (14) 

(the dotted bars indicate a partitioning) 

= A(k - 1)'W(k - l)[y(k - 1) - At* - Dx(k - 1)] + a£wk[yk - a^k - 1)] 

(15) 

= ^k[yk - ajx(k - I)] (16) 

since the first member of Eq.  (15) will be zero as the result of minimizing 

f(k - 1). 

If the solution fails to satisfy the bounding condition, a non-zero value of 
2 X (k) is chosen to initiate a search and iteration procedure for a value which 

does satisfy ||G- Ax(k) ||    s 1, at least approximately.    Each step requires the 

solution of the linear system, and, upon convergence, the solution minimizes 

£ (k) subject to the bounding condition in Eq.  (12). 

5.1     APPROXIMATE INVERSION 

Recall that P = (A' WA)~    can be found recursively through the use of a -matrix 

identity.   By another application of the same formula, we obtain 

[P-1 + (XG)'I(XG)]"1 = P - X2PG(X2GPG + I)-1GP (17) 
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in which the inverse can be approximated by truncating a series representation 

(I + \2GPG)_1 = I - \2GPG + (X2GPG)2 - .  .   . (18) 

leading to 

[P"1 + )L
2

G
2
]
-1

 = P[I - C + C2 - .  .  . ] (19) 

2   2 where  C =: X. G P.    Thus, even the bounded problem may permit a solution 

(although only approximate) without explicit matrix inversion. 

5.2     SUCCESSIVE BOUNDING 

Bounds may be imposed in successive stages, in which case the right member 

of Eq.  (16) requires modification.   Had the estimate x(k - 1) been the result 
* of minimizing f (k - 1),  [that is, had Ax(k - 1) also been ehe solution of an 

equation like Eq.  (14)], then in Eq.  (15) for the k     stage 

A(k - l)'W(k - l)[y(k - 1) - A(k - l)x(k - 1)] = \2(k - l)G2AxCfc - 1)      (20) 

and this quantity must be added to Eq.  (16), or finally 

[A(k)'W(k)A(k) + \2(k)G2]Ax(k) = ajwk[yk - afcx(k - 1)] + X2(k - l)G2Ax(k - 1) 

(21) 

-13- 



6.    SUMMARY AND SPECULATION 

Orbit determination accuracies have improved dramatically in eight years - 
from the early days of estimating only orbit parameters, with simple models 
and empirical techniques - to today's sophisticated methods wherein realistic 
complex models can be used and their many parameters estimated.    The 
emphasis has been on analysis of residuals, explanatory deterministic 
hypotheses, and testing by prediction.    The random forcing function, common 
in the dynamic problems of MFT, has played no significant part in modern 
orbit determination of the classical type. 

The drag problem, especially that of determining short-period fluctuations 
in density, may be a candidate for stochastic treatment.    Rauch (Ref.   12) has 
obtained nice reductions in residuals in a smoothing application of MFT, but 
it is hard to foresee effective prediction from this approach.   Perhaps the 
best use of MFT methods will be in the estimation of amplitudes, periods, 
and time constants as data for the formulation of deterministic hypotheses. 

-15- 
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APPENDIX.    EXAMPLES 

All the results displayed were obtained using the program TRACE (Ref.  10), 

which can generate data, perform covariance analyses, and estimate trajec- 

tory, geophysical, and observational parameters.    The estimation methods 

are basically classical and operation of the program in a filtering mode is 

inefficient and not feasible for extensive studies. 

The reference trajectory for all the figures is a circular equatorial orbit at 

an altitude of 100 n mi above a spherical earth.   The only perturbative force 
is that of atmospheric drag derived from a Jacchia model atmosphere and a 

ballistic coefficient C—A/W = 0. 1 ft /lb.    Observing stations are located at 

30* intervals in the orbital (equatorial) plane.   By specifying an interval of 
two minutes, with a minimum elevation of 20*, only one observation per pass 

was generated, to which independent normal random noise was added. 

Two revolutions of data were fitted with both the true and afalse (C-.A/W s 0.11) 

model.    The in-track separation between the reference and the fitted trajec- 

tories for the fitting interval, and for a like two-revolution prediction interval, 

is shown in Fig.  1.    By using the true mode A, the maximum amplitudes in the 
reconstruction and prediction intervals are 142 and 364 ft, respectively; the 

curve would lie entirely within the shaded area. 

In Fig. 2 the residuals for a false-model fit and prediction are displayed. 

Note their systematic character, the level in the reconstruction interval 

(10 times the random component), and the rapid growth in the prediction 
interval. 

When the model parameters are assumed known, the covariance matrices 

give an in-track standard deviation of only 200 ft at the end of the prediction 

interval.    The 10-percent change in C^A/W, which leads to a 9-mile difference 

in trajectory position, causes only a 4-ft change in the in-track standard 

•19- 
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deviation.    Much more realistic statistics are produced when a 10-percent 
uncertainty is introduced for CQA/W; that is, P    =0. 0001 in Eq. (5).    The 
results are shown in Fig.  3, in which 200 ft are represented by about halt 
the thickness of the shaded area. 

Operating TRACE in recursive modes led to the trajectory differences (from 
the reference trajectory) displayed in Fig. 4.   The theoretical values are 
taken from covariance calculations and, in the prediction interval, are simply 
those of Fig.  3 presented in logarithmic scale.    Again, the trajectory deter- 
mined in the presence of a false (by 10 percent in CQA/W) model diverged 
rapidly from the reference trajectory, but the differences were accurately 
predicted by the P      covariance matrix. 

Two runs were made in which the correct value of C^A/W was used, and the 
different resets illustrate the effect of the assumption that the orbit filtering 
problem can be linearized.    In the linear mode, TRACE is mathematically a 
static model recursive estimation program.    The initial position and velocity 
parameters are re-estimated with each observation, as per Eq.  (16), with 
X (k) = 0.    In both the linear and nonlinear modes, a) the covariance matrix 
P   is obtained by direction inversion rather tiian by appeal to the identity in 
Eq. (6), and b) the position of the satellite is computed from the full (nonlinear) 
equations of motion.   In the nonlinear mode, TRACE successively fits batches 
of 1, 2, 3 .  .  . observations without iteration.    The matrix A and the residuals 
y are recomputed for each fit and thus the nonlinearities in the covariance 
matrix and residual vector are taken into account.    Standard deviations of 
20,000 ft and 40 fps were used in. constructing the initial covariance matrix 
required for recursive estimation. 
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